
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

54 IJDCST

Prevention of Code Injection Attacks Based on
Shell Injection

G.Anil Babu 1, V.Srinivas 2

1Student, AL-AMMER College of Engineering & Information Technology,Anandapuram,Visakapatnam.

2Associate Professor, AL-AMMER College of Engineering & Information Technology,Anandapuram,Visakapatnam

Abstract: The existing protection scheme offers no protection against attacks which do not rely on executing code

injected by the attacker. The existing system follows von Neumann architecture. Where the memory cannot split

into several segments. To forestall the code injection attack, the memory architecture is changed by virtually

Splitting it into two segments i.e. code segment and data segment. The change in architecture does not allow the

intruder to take charge of the injected code, as the injected code remains no executable. The split memory technique

follows Harvard Architecture. Also, Address space layout randomization is followed, where the data are stored in

various locations and not as whole in a single memory location. The intruder or an attacker can be tracked by

knowing their location, IP address, date and time of the attack etc, that are not available in the existing system. To

display the contents of users is the disadvantages in the architectural approach. In this paper we introduce the Shell

Injection technique for displaying the user content in the memory according to the content split into number of

intruder’s information. Our proposed technique also implements URL based attacks in the memory content of the

users.

Index Terms: URL based attacks, Memory split, Code injection Attack, Randomization.

I. INTRODUCTION

Code injection is the application of a computer bug

that is caused by processing unspecified or continent

data. Code injection can be used by an attacker to

describe code into a computer program to change the

course of code injection of execution. The results of a

code injection attack can be disastrous. For instance,

code injection is used by some computer worms to

propagate.

Remote File Inclusion (RFI) is a type

of vulnerability most often found on websites. It

allows an attacker to include a remote file, usually

through a script on the web server. The vulnerability

occurs due to the use of user-supplied input without

proper validation. This can lead to something as

minimal as outputting the contents of the file, but

depending on the severity. The existing system

follows von Neumann architecture. Where

the memory cannot split into several segments. This

type of technique allows the intruder to inject the

code in the single segment and executes it. The

intruder takes control of the entire code running in

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

55 IJDCST

the system and it grants access to modify the data and

perform activities without the knowledge of the

authorized users. Also address space layout

randomization is not possible, the entire data are

stored in the single address space, and it allows the

third party member to obtain all the valuable

information, which is being stored in the database.
Most of the web applications are addicted

towards code injection attacks. Data is injected by an

intruder or an attacker and that third person takes

control of the entire system thus leading to loss of

secured data and also malfunctioning of the entire

system. If the system is attacked, the attacker is not

known by the administrator and the person remains

invincible. This leads to many disorders in the web

applications.

Code injection attacks can be prevented by

virtual splitting of memory i.e. code segment and the

data segment. It is based on Harvard Architecture.

The memory space is allocated in such a way that the

code and data segment of the system are stored

separately. The injected code remains in the data

segment and it will not be executed as it makes

unavailable for the processor during the instruction

fetch from the memory. Also, the tracking facility

enables the administrator to detect the intruder with

their IP address, system name, path, location etc. It

allows the administrator to take necessary action on

the intruder.

Fig 1: Code Injection Process.

Code injection can be prevented with Address space

layout randomization phase, preventing code

injection phase. In this intruders attack by means of

URL is prevented by ASLR phase. The intruders

can’t guess by means of the URL displayed in the

Address bar. In the code injection prevention, the

system will run code only when it is inserted from the

Administrators IP address and host name. Thus

intruder’s code is not executed and prevented from

huge disaster to the website.

II. RELATED WORK

Research on code injection attacks has been ongoing

for a number of years now, and a large number of

protection methods have been researched and tested.

There are two classes of techniques that have become

widely supported in modern hardware and operating

systems; one is concerned with preventing the

execution of malicious code after control flow

hijacking, while the other is concerned with

preventing an attacker from hijacking control flow.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

56 IJDCST

The first class of technique is concerned with

preventing an attacker from executing injected code

using no executable memory pages, but does not

prevent the attacker from impacting program control

flow. This protection comes in the form of hardware

support or a software only patch. Hardware support

has been put forth by both Intel and AMD that

extends the page-level protections of the virtual

memory subsystem to allow for non-executable

pages. (Intel refers to this as the “execute-disable

bit”. The usage of this technique is fairly simple:

Program information is separated into code pages and

data pages. The data pages (stack, heap, bss, etc) are

all marked no executable. At the same time, code

pages are all marked read-only. In the event an

attacker exploits a vulnerability to inject code, it is

guaranteed to be injected on a page that is non-

executable and therefore the injected code is n ever

run. Microsoft makes use of this protection

mechanism in its latest operating systems, calling the

feature Data Execution Protection (DEP). This

mediation method is very effective for traditional

code injection attacks, however it requires hardware

support in order to be of use. Legacy x86 hardware

does not support this feature. This technique is also

available as a software-only patch to the operating

system that allows it to simulate the execute-disable

bit through careful mediation of certain memory

accesses. PAX PAGEEXEC is an open source

implementation of this technique that is applied to the

Linux kernel. It functions identically to the hardware

supported version, however it also supports legacy

x86 hardware due to being a software only patch.

III. EXISTING SYSTEM

To forestall the code injection attack, the memory

architecture is changed by virtually Splitting it into

two segments i.e. code segment and data segment.

The change in architecture does not allow the

intruder to take charge of the injected code, as the

injected code remains no executable. The split

memory technique follows Harvard Architecture.

Also, Address space layout randomization is

followed, where the data are stored in various

locations and not as whole in a single memory

location. The intruder or an attacker can be tracked

by knowing their location, IP address, date and time

of the attack etc, that are not available in the existing

system.

IV. PROPOSED SYSTEM

To understand how the most basic shell injection

might work, imagine a simple case. A custom script

is needed to display file contents to users, but the

development team doesn't want to spend time writing

a procedure to read the files. Instead, they decide to

allow users to specify a file, then use the Unix

command cat to display the results.

4.1 Authentication Phase

This is the first module of all applications which

contains the user registration and login and

administrator’s login. In the previous stages, an

unknown user also can block the valid user account

without knowing the password of the account holder.

This is one type of intruder. In the first phase if the

user wrongly types the password simultaneously

(more than 3 times) then the login will be transferred

to a temporary (fake) account page. The intruder does

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

57 IJDCST

not know that he is in a fake page as it resembles

original page.

4.2 Address space Intrusion Avoidance phase

Address space layout randomization could be

combined with this phase to prevent the URL based

attacks. Even if the intruder attacks the system

through URL the control will not be granted to the

intruder. If the intruder wants to move to next page

after the authentication through URL the user

remains in the same address, but the page that is

being displayed will be different.

4.3 Preventing Code Injection phase

When the intruder tries to modify any data or create

any malicious event, the intruder is not permitted to

perform the activities since intrusion is done with

unauthorized user name and password. If the changes

are done with unauthorized access then the

information of the intruder are gathered and it is

being sent to the administrator in the secure manner.

4.4 Users Content Information

We saw a basic example of how command injection

might work. In this section, we will talk about the

varieties of command injections and how they can be

executed. Assuming some analysis has found a

website function which is likely to be vulnerable to

shell injection.

V. EMPIRICAL RESULTS

In this section we describe the two consecutive terms

of URL based attack detection. Input design is the

process of converting the user oriented input to the

computer oriented format. Authentication module is

used to log in to the system and perform the

operations. Split memory module is used to separate

the code and the data segment. Preventing code

injection module helps the administrator to know the

details of the intruder. The details are collected and it

is stored in the database.

Output design generally refers to the results and

information that are generated by the system for

many end-users; output is the main reason for

developing the system and the basis on which they

evaluate the usefulness of the application. In this

system, with the authenticated user name and

password, the user can perform the operations

without any restrictions. If the users want to update

the data or transfer the amount, the action can be

done successfully, where as if the intruder logs in

without knowing the password or user name there by

giving false details more than three times, the

intruder is redirected towards a fake page where the

details of the intruder can be tracked. Also when an

attacker wants to update any data, the updation is

done only temporarily and it is not stored or updated

in the database. To the third person the transaction is

restricted and on clicking the ‘view details’ only fake

details are displayed. Thus any attack performed by

the third person is blocked or restricted.

The attacker may probably corrupt various

parts of a program’s memory space. Due to the fact

that the operating system doesn’t understand the

working of the running program, it would be

infeasible for it to attempt any sort of recovery that

would permit the application to continue running. It

may be much more feasible, for the application itself

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

58 IJDCST

to register a call-back function or a special signal

handler that the operating system could transfer

execution to in the event an attack is detected.

In our approach above mentioned problems can be

discussed in the malicious attackers. Assume for a

moment that you have found the previous examples

page, which takes as an argument a filename as input

and executes the shell command "cat" against that

file. In the previous example, a semicolon was used

to separate out one command form another, to

indicate that after the cat command completed,

another function should be called in the same line. It

is reasonable to assume that a more advanced

developer might have filtered out some forms of shell

injection, such as by removing semicolons, rendering

the previous attack ineffective. There are a number of

ways to string shell commands together to create new

commands. Here are the common operators you can

use, as well as examples of how they might be used

in an attack:

Redirection Operators

Examples: <, >>, >

These operators redirect either input or output

somewhere else on the server. < will make whatever

comes after it standard input. Replacing the filename

with < filename will not change the output, but could

be used to avoid some filters. > redirects command

output, and can be used to modify files on the server,

or create new ones altogether. Combined with the cat

command, it could easily be used to add unix users to

the system, or deface the website. Finally, >>

appends text to a file and is not much different from

the original output modifier, but again can be used to

avoid some simplistic detection schemes.

Pipes

Examples: |

Pipes allow the user to chain multiple commands. It

will redirect the output of one command into the

next. So you can run unlimited commands by

chaining them with multiple pipes, such as cat file1 |

grep "string".

Inline commands

Examples: ;, $

This is the original example. Putting a semicolon asks

the command line to execute everything before the

semicolon, then execute everything else as if on a

fresh command line.

Logical Operators

Examples: $, &&, ||

These operators perform some logical operation

against the data before and after them on the

command line.

Fig 2: Performance analysis with existing attack

detection.

0

5

10

15

1 2 3 4

attack3

attack2

attack1

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

59 IJDCST

 `shell_command` - executes the command

 $(shell_command) - executes the command

 | shell_command - executes the command and returns

the output of the command

 || shell_command - executes the command and

returns the output of the command

 ; shell_command - executes the command and returns

the output of the command

 && shell_command executes the command and

returns the output of the command

 > target_file - overwrites the target file with the

output of the previous command

 >> target_file - appends the target file with the output

of the previous command

 < target_file - send contents of target_file to the

previous command

 - operator - Add additional operations to target

command.

VI. CONCLUSION

The split memory technique follows Harvard

Architecture. Also, Address space layout

randomization is followed, where the data are stored

in various locations and not as whole in a single

memory location. The intruder or an attacker can be

tracked by knowing their location, IP address, date

and time of the attack etc, that are not available in the

existing system. Due to the fact that the operating

system doesn’t understand the working of the running

program, it would be infeasible for it to attempt any

sort of recovery that would permit the application to

continue running. It may be much more feasible, for

the application itself to register a call-back function

or a special signal handler that the operating system

could transfer execution to in the event an attack is

detected.

VII. REFERENCES

1) https://www.golemtechnologies.com/arti

cles/shell-injection

2) Technet.microsoft.com/emus/library/cc7235
64.aspx,Feb 1, 2001

3) https://www.golemtechnologies.com/articles
/shell-injection Oct 9, 2011.

4) doi.ieeecomputersociety.org/10.1109/TDSC.
2010.1 by R Riley - 2010 - Cited by 26 -
Related articles Dec 15, 2010.

5) Ryan Riley, Xuxian Jiang, Dongyan Xu,”
An Architectural Approach to Preventing
Code Injection Attacks”, Nov 2010.

